

Fatigue Strength of Dissimilar FSSW Joint between Al Alloy and CFRP

T. Sato¹, T. Kakiuchi^{2,*}, N. Hirooka³, A. Ohtani⁴, Y. Mizutani⁵, D. Ogawa⁵, Y. Nishigaki⁵, D. Kiriyama¹ and Y. Uematsu²

¹ Graduate Student, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan ² Department of Mechanical Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan ³ Fudow Co., Ltd., 5747-6 Kitayama, Fujinomiya, Shizuoka 418-0012, Japan ⁴ Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

⁵ Gifu Prefectural Industrial Technology Center, 1288 Oze, Seki, Gifu 501-3265, Japan

* Corresponding Author: kakiuchi@gifu-u.ac.jp

Abstract

Dissimilar friction stir spot welding (FSSW) joints between an Al alloy 6061-T6 plate and a CFRP plate were fabricated and fatigue tests were performed. The thickness of the both plates was 2 mm, and the spot diameter was 10 mm. A mesh made of steel wires was attached by die pressing on the top of CFRP to enhance the joint with the Al plate. 3 different meshes made of different wires, respectively, were used: a single layer mesh of AISI 316 steel wires, a double layer mesh of AISI 316 steel wires, and a single layer mesh of AISI 329 steel wires. The static tensile shear strengths were more than 1.7 kN and the fatigue strengths at 10⁷ cycles were larger than 0.7 kN for all kinds of joint, while the strengths depended on the type of steel mesh. Static and fatigue fracture mechanisms were investigated using a scanning electron microscope (SEM) and discussed further.

Keywords: Friction stir spot welding, Dissimilar joint, Aluminum alloy, CFRP, Fatigue